A Parallel Computational Kernel for Sparse Nonsymmetric Eigenvalue Problems on Multicomputers

نویسندگان

  • M. R. Guarracino
  • F. Perla
  • P. Zanetti
چکیده

The aim of this paper is to show an effective reorganization of the nonsymmetric block lanczos algorithm efficient, portable and scalable for multiple instructions multiple data (MIMD) distributed memory message passing architectures. Basic operations implemented here are matrix-matrix multiplications, eventually with a transposed and a sparse factor, LU factorisation and triangular systems solution. Since the communication overhead of the algorithm inhibits an efficient parallel implementation, we propose a reorganization of the block algorithm which reduces the total amount of communication involved in linear algebra operations. Then, we develop an efficient parallelization of the matrix-matrix multiplication when one of the factor is sparse. Some other linear algebra operations are performed using ScaLAPACK library. The parallel eigensolver has been tested on a cluster of PCs. All reported results show the proposed algorithm is efficient and scalable on the target architectures for problems of adequate dimension, and it can be the computational kernel of a robust Received: June 28, 2005 c © 2005, Academic Publications Ltd. Correspondence author 268 M.R. Guarracino, F. Perla, P. Zanetti software for large sparse eigenvalue problems. AMS Subject Classification: 65F15, 65F50, 68W10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form

In this paper, we present an algorithm for the reduction to block upper-Hessenberg form which can be used to solve the nonsymmetric eigenvalue problem on message-passing multicomputers. On such multicomputers, a nonsymmetric matrix can be distributed across processing nodes logically configured into a two-dimensional mesh using the block-cyclic data distribution. Based on the matrix partitionin...

متن کامل

Efficient Methods For Nonlinear Eigenvalue Problems Diploma Thesis

During the last years nonlinear eigenvalue problems of the type T (λ)x = 0 became more and more important in many applications with the rapid development of computing performance. In parallel the minmax theory for symmetric nonlinear eigenvalue problems was developed which reveals a strong connection to corresponding linear problems. We want to review the current theory for symmetric nonlinear ...

متن کامل

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation

The Jacobi-Davidson (JD) algorithm recently has gained popularity for finding a few selected interior eigenvalues of large sparse polynomial eigenvalue problems, which commonly appear in many computational science and engineering PDE based applications. As other inner–outer algorithms like Newton type method, the bottleneck of the JD algorithm is to solve approximately the inner correction equa...

متن کامل

LAPACK Working Note UT CS Parallel numerical linear algebra

We survey general techniques and open problems in numerical lin ear algebra on parallel architectures We rst discuss basic principles of parallel processing describing the costs of basic operations on parallel ma chines including general principles for constructing e cient algorithms We illustrate these principles using current architectures and software systems and by showing how one would imp...

متن کامل

Performance Engineering of the Kernel Polynomial Method on Large-Scale CPU-GPU Systems

The Kernel Polynomial Method (KPM) is a wellestablished scheme in quantum physics and quantum chemistry to determine the eigenvalue density and spectral properties of large sparse matrices. In this work we demonstrate the high optimization potential and feasibility of peta-scale heterogeneous CPU-GPU implementations of the KPM. At the node level we show that it is possible to decouple the spars...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011